Chapter Three: Neurophysiology

- Explain entire Action Potential process with the Sodium Potassium pumps.
 - Is at resting membrane potential, with a charge of -70mv
 - Will reach a threshold, stimulus occurs, also known as graded potential, Channels open up, -65mv
 - Depolarization occurs, Sodium rushes in +30mv
 - Repolarization, closure of Na+ channel, and opening of K+ channel, Returning to resting membrane potential
 - Hyperpolarization, This is when K+ channel remains open after resting membrane potential, below -70mv
- Explain Threshold.
 - Is the level of stimulus needed to create an action potential, follows all or nothing period, either you have a stimulus or you dont.
- What is the Refractory Period?
 - Its how long it takes for a neuron to send another signal, some neurons will need longer periods
- What are some factors that impact action potential?
 - Axon diameter, bigger = more faster
 - Degree of myelination
- What is a Synapse? What are the different ones?
 - Chemical Synapse
 - Electrical Synape

Chapter Three: Neurophysiology

- What type of communication do the 2 synapses utilize, which one is faster and where are they utilized?
 - Electrical: Gap Junctions, are faster, smooth, and cardiac muscle
 - Chemical: Neurotransmitters, are slower, skeletal muscle.
- What neurotransmitters are utilized for excitatory of skeletal muscle and excitatory or inhibitory of emotions.

skeletal muscle: Acetylcholine

emotions: Norepinephrine

 What were the key physiological differences between Parasympathetic and Sympathetic?

Parasympathetic	Sympathetic
Constricts Pupils	Dilated Pupils
Stimulates Stomach Activity	Inhibits Stomach Activity
Constricts Airway	Relaxes/Opens Airways
Slows Heart Rate	Increases Heart Rate
Contracts Bladder	Relaxes Bladder
Stimulates Intestinal Activity	Inhibits Intestinal Activity